School-Based Teacher Motor Interventions for Pupils with Cerebral Palsy in Ghana


This paper presents the findings of a study that utilized three focus groups in unearthing school-based teacher motor skill interventions for pupils with cerebral palsy and related challenges in Ghana. Overall, 23 teachers (12 males; 11 females) selected through maximum variation sampling constituted the different focus groups. Whereas teachers implemented a number of motor skill activities for pupils with cerebral palsy on a daily basis, majority emphasized fine motor skill activities, utilized task-specific motor training strategies and applied explicit motor skill instructions. Teachers generally did not utilize the concept of stages of motor learning in their respective motor skill interventions. Furthermore, some teachers found implementing developmentally appropriate motor skill interventions challenging. It is recommended that teachers endeavour to incorporate more gross motor skill activities as they have the potential to boost fine motor skills. Again, teachers should incorporate implicit motor skill instructions in teaching motor skill activities to pupils with cerebral palsy as these pupils may have limited capacity for explicit motor skill instructions.


  1. Arpino, C., Vescio, F., De Luca, A., Curatolo, P. (2009). Efficacy of intensive versus non-intensive training in children with cerebral palsy: a meta-analysis. International Journal of Rehabilitation Research, 33(2), 165–171.  |   Google Scholar
  2. Barela, J. A., Focks, G. M. J., Hilgeholt, T., Barela, A. M. F., Carvalho, R. P., & Savelsbergh, G. J. P. (2011). Perception – action and adaptation in postural control of children and adolescents with cerebral palsy. Research in Developmental Disabilities, 32, 2075–2083  |   Google Scholar
  3. Berg-Emons, R. J., van Baak, M. A., de Barbanson, D. C., Speth, L., & Saris, W. H. (1996). Reliability of tests to determine peak aerobic power, anaerobic power and isokinetic muscle strength in children with cerebral palsy. Developmental Medicine & Child Neurology, 38, 1117–25.  |   Google Scholar
  4. Berry, J. (2009). Fine motor skills in the classroom: Screening and remediation strategies. Framingham, MA: Therapo.  |   Google Scholar
  5. Blank, R., Smits-Engelsman, B., Polatajko, H., & Wilson, P. (2012). European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of 634 developmental coordination disorder (long version). Dev Med Child Neurol, 54, 54-93.  |   Google Scholar
  6. Brook, G., Wagenfeld, A., & Thomsopson, C. (2017). Fine motor development and early performance in school. Retrieved from /Finemotordevpp1-4.pdf.  |   Google Scholar
  7. Cameron, C. E., Brock, L. L., Murrah, W. M., Bell, L. H., Worzalla, S. L., Grissmer, D., & Morrison, F. J. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. Child development, 83(4), 1229-44.  |   Google Scholar
  8. Cantu, C. O. (2004). Toy alternatives: Crafts and fine motor development. The Exceptional Parent, 34(10), 28-29.  |   Google Scholar
  9. Dalvand, H., Dehghan, L., Hadian, M.R., Feizy, A., & Hosseini, S.A. (2012). Relationship between gross motor and intellectual function in children with cerebral palsy: a cross-sectional study. Arch Phys Med Rehabil, 93,480-4.  |   Google Scholar
  10. Donica, D. K., & Lust, C. A. (2015). Effectiveness of motor skills program in head start: A two-group controlled trial. American Journal of Occupational Therapy, 65(5), 560-568.  |   Google Scholar
  11. Donnelly, J. E., Greene, J. L., Gibson, C. A., Smith, B. K., Washburn R. A. Sullivan D. K., ... Williams, S. L. (2009). Physical Activity Across the Curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev. Med. 49,336–341.  |   Google Scholar
  12. Donnica, D. K., & Lust, C. A. (2015). Effectiveness of motor skills program in head start: A two-group controlled trial. American Journal of Occupational Therapy, 65(5), 560-568.  |   Google Scholar
  13. Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, CA: Brooks/Cole  |   Google Scholar
  14. Gordon, A. M., Hung, Y. C., Brandao, M., Ferre, C. L., Kuo, H. C., Friel, K., …Charles J. R. (2011). Bimanual training and constraint-induced movementtherapy in children with hemiplegic cerebral palsy: a randomized trial. Neurorehabilitation and Neural Repair, 25, 692–702.  |   Google Scholar
  15. Graham, S. (2013). Motor skills interventions in the classroom. Education Digest: Essential Readings Condensed for Quick Review, 76(1), 5-10.  |   Google Scholar
  16. Graham, S., Harris, K.R., Mason, L., Fink-Chorzempa, B., Moran, S., Saddler, B. (2007). How do primary grade teachers teach handwriting? A national survey. Reading and Writing: An Interdisciplinary Journal, 21(1-2), 49-69.  |   Google Scholar
  17. Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: Two new school readiness indicators. Developmental Psychology, 46(5), 1008–1017.  |   Google Scholar
  18. Haywood, K. M., & Getchell, N. (2014). Life span motor development (6th ed.). Champaign, IL: Human Kinetics.  |   Google Scholar
  19. Hirsh, A. T., Gallegos, J. C., Gertz, K. J., Engel, J. M., Jensen, M. P. (2010). Symptom burden in individuals with cerebral palsy. J Rehabil Res Dev, 47(9), 863-76.  |   Google Scholar
  20. Hubbard, I. J., Parsons, M. W., & Neilson C. (2009). Task-specific training: evidence for and translation to clinical practice. Occup Ther Int, 16, 175–89.  |   Google Scholar
  21. Huber, J. (2020). Understanding motor learning stages improves skill instruction. Retrieved from  |   Google Scholar
  22. Johnston, M. V. (2009). Pasticity in the developing brain: implications for rehabilitation. Developmental Disabilities Research Reviews, 15, 94–101.  |   Google Scholar
  23. Kal, E. C., van Der Kamp, J., & Houdijk, H. (2013). External attentional focus enhances movement automatization: A comprehensive test of the constrained action hypothesis. Hum Mov Sci, 32, 527–539.  |   Google Scholar
  24. Kal, E., Prosée, R. B., Winters, M., & van der Kamp, J. (2018). Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS ONE,13(9), e0203591  |   Google Scholar
  25. Kleynen, M., et al. (2014). Using a delphi technique to seek consensus regarding definitions, descriptions and classification of terms related to implicit and explicit forms of motor learning. PLoS ONE, 9, e100227.  |   Google Scholar
  26. Krebs, P. (2000). Mental retardation. Adapted Physical Education and Sport. Champaign, IL: Human Kinetics.  |   Google Scholar
  27. Liao, C. M., & Masters, R. S. W. (2001). Analogy learning: a means to implicit motor learning. Journal of Sports Sciences, 19, 307-319.  |   Google Scholar
  28. MacLennan, A. H., Thompson, S. C., & Gecz, J. (2015). Cerebral palsy: causes, pathways, and the role of genetic variants. American Journal Obstetrics Gynecolology, 213(6), 779–88.  |   Google Scholar
  29. Martin, S. (2006). Teaching motor skills to children with cerebral palsy and similar movement disorders: a guide for parents and professionals (1st ed.). Bethesda, MD: Woodbine House.  |   Google Scholar
  30. Masters, R. S. W. (1992). Knowledge knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. British Journal of Psychology, 83, 343-358.  |   Google Scholar
  31. Masters, R. S. W., Polman, R. C. J., & Hammond, N. V. (1993). Reinvestment: A dimension of personality implicated in skill breakdown under pressure. Personality and Individual Differences, 14, 655-666.  |   Google Scholar
  32. Maxwell, J. P., Masters, R. S. W., & Eves, F. F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition, 12(3), 376–402.  |   Google Scholar
  33. Maxwell, J. P., Masters, R. S. W., & Eves, F. F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition, 12(3), 376–402.  |   Google Scholar
  34. Pagani, L., Fitzpatrick, C., Archambault, I., & Janosz, M. (2010). School Readiness and Later Achievement: A French-Canadian Replication and Extension. Developmental Psychology, 46(5), 984-994.  |   Google Scholar
  35. Poole, C., Miller, S. A., & Church, E. B. (2005). Development: Ages & stages--Emerging physical skills. Early Childhood Today, 19(7), 22-25.  |   Google Scholar
  36. Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24, 362-378.  |   Google Scholar
  37. Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., … Jacobsson, B. (2007). A report: The definition and classification of cerebral palsy. Developmental Medicine & Child Neurology, 49, 8–14.  |   Google Scholar
  38. Rule, A. C., & Stewart, R. A. (2002). Effects of practical life materials on kindergartners’ fine motor skills. Early Childhood Education Journal, 30(1), 9-13.  |   Google Scholar
  39. Saavedra, S., Joshi, A., Woollacott, M. & van Donkelaar P. (2009). Eye–hand coordination in children with cerebral palsy. Experimental Brain Research, 192(2), 155–165.  |   Google Scholar
  40. Sandler, A. D., Watson, T. E., Footo, M., Levine, M. D., Coleman, W. L., & Hooper, S. R. (1992). Neurodevelopmental study of writing disorders in middle childhood. Journal of Developmental and Behavioral Pediatrics, 13, 17-23.  |   Google Scholar
  41. Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (4th ed.). Champaign: Human Kinetics.  |   Google Scholar
  42. Sortor, J. M., & Kulp, M. T. (2003). Are the results of the Beery-Buktenica Developmental Test of Visual-Motor Integration and its subtests related to achievement test scores? Optometry and Vision Science, 80, 758-763.  |   Google Scholar
  43. Stewart, J. A., Dennison, D. A., Kohl, H. W., & Doyle, J. A. (2004). Exercise level and energy expenditure in the TAKE 10! In-class physical activity program. J. Sch. Health, 74, 397–400.  |   Google Scholar
  44. Strevig, A. (2009). The effects of directed fine motor activities on kindergarten students [Unpublished master’s thesis]. Goucher College, Towson, Maryland.  |   Google Scholar
  45. Thelen, E. (1989). The (re)discovery of motor development: Learning new things from an old field. Developmental Psychology, 25(6), 946-949.  |   Google Scholar
  46. Tse, A. C. Y., Fong, S. S. M., Wong, T. W. L., & Masters, R. S. W. (2017). Analogy motor learning by young children: A study of rope skipping. European Journal of Sport Science, 17, 152–159.  |   Google Scholar
  47. Ulrich, D. A. (2000). Test of Gross Motor Development. Austin, TX: Pro-ed Publishers.  |   Google Scholar
  48. Van Rooijen, M., Verhoeven, L., Smits, D. W., Ketelaar, M., Becher, J. G., & Steenbergen, B. (2012). Arithmetic performance of children with cerebral palsy: the influence of cognitive and motor factors, Reserch in Developmental Disabilities, 33, 530-7.  |   Google Scholar
  49. Yu, J. J., Sit, C. H. P., & Burnett, A. F., (2018). Motor skill interventions in children with developmental coordination disorder: A systematic review and meta-Analysis. Arch Phys Med Rehabil, 99(10), 2076-2099.  |   Google Scholar

How to Cite

Twum, F., & Antwi-Danso, S. (2022). School-Based Teacher Motor Interventions for Pupils with Cerebral Palsy in Ghana. European Journal of Education and Pedagogy, 3(2), 142–152.

Search Panel

 Frank Twum
 Google Scholar |   EJEDU Journal

 Stephen Antwi-Danso
 Google Scholar |   EJEDU Journal