Universitas Negeri Yogyakarta, Indonesia
* Corresponding author
Universitas Negeri Yogyakarta, Indonesia

Article Main Content

The aims of this study are (1) to analyze the effect of the ability to read technical drawings on the ability to make CNC program parts; (2) to analyze the effect of geometry skills on the ability to make CNC program parts; (3) to analyze the effect of cutting parameter knowledge on the ability to make CNC program parts; and (4) analyze the effect of the ability to read technical drawings, geometry skills, and knowledge of cutting parameters simultaneously on the ability to make CNC program parts. This research is quantitative correlational research. The subjects of the study were 360 students of SMK class XII in the field of Mechanical Engineering in the city of Palembang, Indonesia, using a random sampling technique by Isaac and Michael equations so that a total sample of 187 students was obtained. The data collection method uses the test method. The data analysis used is a correlational statistical analysis between the three dependent variables and one independent variable. The results of the study: (1) The ability to read technical drawings has a positive and significant effect on the ability to make CNC programs by 11.17%; (2) Geometry ability has no significant effect on the ability to make CNC programs; (3) Knowledge of cutting parameters has a positive and significant effect on the ability to make CNC programs by 75.36%; and, (4) the ability to read technical drawings, geometry skills, and knowledge of cutting parameters have a positive and significant effect on the ability to make CNC programs by 89.9%.

References

  1. Agrisa, H. H. (2020). An overview of process CNC machining. Journal of Mechanical Science and Engineering, 6(2), 029–033.
     Google Scholar
  2. Albayrak, S., Mercan, S., & Karaçam, H. (2022). Reducing the roughness and sound intensity by optimization of cutting parameters in processing of AISI 2714 steel material on CNC milling machine. Tehnicki Vjesnik, 29(6), 1941–1948.
     Google Scholar
  3. Anggoro, P. W., Purharyono, Y., Anthony, A. A., Tauviqirrahman, M., Bayuseno, A. P., & Jamari. (2022). Optimization of new material orthotic insole cutting parameters using a Taguchi and response surface methodology approach. Alexandria Engineering Journal, 61(5), 3613–3632.
     Google Scholar
  4. Bodzas, S., & Krakko, B. (2017). Lean production planning for 5 axes CNC driven milling machine. Machine Learning Research. 2(2), 66–71.
     Google Scholar
  5. Dickson Kinyua, K. (2017). Differential geometry: An introduction to the theory of curves. International Journal of Theoretical and Applied Mathematics, 3(6), 225-228.
     Google Scholar
  6. Fahrizal, F., Suprapto, E., P., & B. (2022). Optimasi parameter pemesinan untuk minimasi keausan pahat pada pembubutan baja karbon rendah [Optimization of machining parameters to minimize tool wear in low carbon steel]. Jurnal Pendidikan Teknik Mesin Undiksha, 10(1), 10–19.
     Google Scholar
  7. Fatriyana, M. (2020). CNC program and programming of CNC machine. Journal of Mechanical Science and Engineering, 7(2), 19–23.
     Google Scholar
  8. Fitriyanto, M. N., & Pardjono, P. (2019). Factors affecting the employability skills of vocational students majoring in mechanical engineering. Jurnal Pendidikan Vokasi, 9(2), 132–140.
     Google Scholar
  9. Galitskaya, V. N., & Drigas, A. S. (2020). Special education: Teaching geometry with ICTs. International Journal of Emerging Technologies in Learning, 15(6), 173–182.
     Google Scholar
  10. K, V., & Srinivasan, V. (2023). Performance and analysis of sputtered carbide inserts in CNC machining. Measurement: Sensors, 27(2023), 100737, 1-6.
     Google Scholar
  11. Kadam, K., Mishra, S., Deep, A., & Iyer, S. (2021). Enhancing engineering drawing skills via fostering mental rotation processes. European Journal of Engineering Education, 46(5), 796–812.
     Google Scholar
  12. Katta, S. (2018). Optimum technique for investigations of machining parameters in titanium (grade 5) alloy turning the use of carbide tip tools. American Journal of Mechanical and Industrial Engineering, 3(2), 27-33.
     Google Scholar
  13. Kieu, T. Q., & Liu, W.-T. (2018). Motivation and cognitive learning in workplaces of Vietnamese students in learning Chinese: A qualitative study. Jurnal Pendidikan Teknologi dan Kejuruan, 24(2), 171–177.
     Google Scholar
  14. Kounta, C. A. K. A., Kamsu-Foguem, B., Noureddine, F., & Tangara, F. (2022). Multimodal deep learning for predicting the choice of cut parameters in the milling process. Intelligent Systems with Applications, 16(2022), 200112, 1-16.
     Google Scholar
  15. Martono, M., & Wagiran, W. (2016). Developing a learning module of computer numerically control GSK 983 machines to enhance students’ learning outcomes. Jurnal Pendidikan Teknologi dan Kejuruan, 23(2), 184-190.
     Google Scholar
  16. Moreno-García, C. F., Elyan, E., & Jayne, C. (2019). New trends in the digitization of complex engineering drawings. Neural Computing and Applications, 31(6), 1695–1712.
     Google Scholar
  17. Nagandran, V. (2017). Modeling and optimization of carbon steel AISI 1045 surface roughness in CNC turning based on response surface methodology and heuristic optimization algorithms. American Journal of Neural Networks and Applications, 3(6), 56-62.
     Google Scholar
  18. Nahrowi, D., Aribowo, D., & Hamid, M. A. (2020). Pengembangan trainer kit mikrokontroler ATMEGA16 untuk sekolah menengah kejuruan [Development of an ATMEGA16 microcontroller trainer kit for vocational high schools]. Jurnal Pendidikan Teknologi dan Kejuruan, 17(2), 145–155.
     Google Scholar
  19. Ntemi, M., Paraschos, S., Karakostas, A., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2022). Infrastructure monitoring and quality diagnosis in CNC machining: A review. CIRP Journal of Manufacturing Science and Technology, 38, 631–649.
     Google Scholar
  20. Nurjanah, I., Ana, A., & Masek, A. (2022). Systematic literature review: work readiness of vocational high school graduates in facing the industrial 4.0 era. Jurnal Pendidikan Teknologi dan Kejuruan, 28(2), 139–153.
     Google Scholar
  21. Otto, H. E., & Mandorli, F. (2018). A framework for negative knowledge to support hybrid geometric modeling education for product engineering. Journal of Computational Design and Engineering, 5(1), 80–93.
     Google Scholar
  22. Quezada, V. nica D. a. (2020). Difficulties and performance in mathematics competences: Solving problems with derivatives. International Journal of Engineering Pedagogy, 10(4), 35–53.
     Google Scholar
  23. Saidou, N. (2019). Introduction to cartesian geometry and cartesianization of complex shapes. Mathematics and Computer Science, 4(4), 84-88.
     Google Scholar
  24. Scheibel, B., Mangler, J., & Rinderle-Ma, S. (2021). Extraction of dimension requirements from engineering drawings for supporting quality control in production processes. Computers in Industry, 129, 103442.
     Google Scholar
  25. Sharma, G. V. S. S., Murugadoss, J. R., & Rambabu, V. (2020). Fostering higher order thinking skills in engineering drawing. Journal of Engineering Education Transformations, 34(1), 28–40.
     Google Scholar
  26. Sudo, M., & Aoyama, H. (2020). Basic development of data sharing CNC system (Case study on high accuracy machining of characteristic lines). Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14(1), 1-11.
     Google Scholar
  27. Suprapto, E., Setyansah, R. K., & Devina, D. (2021). GeoGebra Application Based Tutorial Materials to Improve Spatial Mathematics Abilities in Vocational High Schools. Jurnal Pendidikan Teknologi dan Kejuruan, 27(2), 175–181.
     Google Scholar
  28. Suwono, I., Rahmaningrum, A. E., & Sholikah, M. (2022). E-agenda simulation: Is it effective for improving students’ learning competences and motivation in vocational high school? Jurnal Pendidikan Teknologi dan Kejuruan, 28(1), 47–62.
     Google Scholar
  29. Waluyo, J. (2020). Pengaruh geometri pahat, tebal pemakanan dan jenis pahat terhadap keausan dan kualitas kekasaran permukaan hasil proses pembubutan benda kerja baja AISI 1045 menggunakan mesin CNC QTN 100 U [The influence of tool geometry, infeed thickness and type of chisel on wear and surface roughness quality of turning process of AISI 1045 steel workpieces using a CNC QTN 100 U machine]. Simetris, 14(2), 26–32.
     Google Scholar
  30. Wibisono, G., Wijanarka, B. S., & Theophile, H. (2020). The link and match between the competency of vocational high schools graduates and the industry in CAD/ CAM and CNC. Jurnal Pendidikan Teknologi dan Kejuruan, 26(1), 26–34.
     Google Scholar
  31. Xie, L., Lu, Y., Furuhata, T., Yamakawa, S., Zhang, W., Regmi, A., Kara, L., & Shimada, K. (2022). Graph neural network-enabled manufacturing method classification from engineering drawings. Computers in Industry, 142(2022), 103697, 1-10.
     Google Scholar